,

How to replace a ball valve

Ball valves are an integral part of plumbing and piping systems. These valves are highly durable and leak-resistant by and large, but they are not immune to damage. Replacing a damaged ball valve is relatively simple if the correct sequence of steps is followed. This article discusses how to replace a ball valve connected to a copper pipe or PVC pipe in case the valve doesn’t work properly.

Ball valve issues

ball valve is a shut-off valve that directs the flow of a fluid by means of a rotary ball having a hole. There are a few potential ball valve failures like getting stuck, fluid leakage, corrosion, and overheating, resulting in the valve not functioning properly. Typically, there are three cases:

  1. Ball valve issues that can be fixed manually: Issues like a stuck ball valve that prevents fluid flow, sediment and dirt buildup that makes the valves difficult to open and close, or actuator issues can be easily solved by manual intervention as discussed in our article on ball valve issues and troubleshooting.
  2. Ball valve issues that can be fixed by replacing a part: Issues like a partially closing ball valve, worn-out O-ring, and stem may require certain parts of the ball valve to be replaced with new ones rather than ordering a whole new valve.
  3. Ball valve issues that require a total replacement: Certain issues like a leaking ball valve may require the whole valve to be replaced with a new one.
A rusted ball valveFigure 2: A rusted ball valve

How to replace a ball valve

The following is an example on how to replace a ball valve on a water line with a new one. The same principles apply for other applications.

Step 1: Turn off the water

Turn off the main water supply to all the pipes being worked on. Then, drain the existing water pressure in these pipes by turning on the connected faucet.

Step 2: Access the pipes

Accessing the pipes is necessary to replace an existing ball valve. For example:

  • A sink: Try to access the ball valve underneath the sink.
  • Shower pipe/bathtub faucet: Either via the basement crawlspace or via breaking the wall that has the pipe attached.

This step helps plan in advance whether to break the wall for replacing the required valve.

Three-dimensional representation of copper and PVC pipes within a wallFigure 3: Three-dimensional representation of copper and PVC pipes within a wall

Step 3: Cut the old valve out

Once there is full access to the pipes, use a hacksaw to cut off the old ball valve residing in the pipe (marked in red circles in Figure 4). For this, cut the two sides of the pipe where the valve is placed, and get the valve removed from its position. In case the old valve can be unscrewed from its position, remove the valve and skip to Step 8.

A ball valve connected in a pipe system. The red circles show the points where the pipe needs to be cut to remove the valve.Figure 4: A ball valve connected in a pipe system. The red circles show the points where the pipe needs to be cut to remove the valve.

Step 4: Disassemble the ball valve

Disassemble the ball valve parts and make sure to keep all the parts together. This ensures that if any of the individual parts are salvageable, the reassembling process can be done with ease.

Step 5: Inspect the ball valve parts

Inspect the ball valve parts for any cracks or wear and tear that might have led to the leaking or nonfunctional ball valve. If a specific part of the valve seems faulty while the rest of them seem normal and function well, the best option would be to order a replacement part. Read our ball valve leakage troubleshooting article for more details on the causes of ball valve leakage and how to troubleshoot them. After getting the damaged part replaced, use lubricating oil and screws to reassemble the ball valve parts. If there is damage to multiple parts of the valve, or if the ball valve seems damaged beyond repair, it is a better option to get a completely new ball valve.

Step 6: Buy a new valve/valve part and other supplies required

Have an idea about the type of pipes installed so that it is easy to buy a new pipe section and seals required.

  • Copper pipe: A plumber’s tape or sweat pipe joints
  • PVC pipe: Pipe cement

Also, get a spackle and a new valve or valve part(s) based on the needs.

Step 7: Splice the pipe

Splice the new pipe section onto the pipe where the valve was cut. Allow enough space for the new ball valve to fit in.

  • PVC pipe: Apply PVC glue to the existing pipe where the cut was made and on one end of the new pipe. Push the new pipe onto the existing pipe and hold for approximately 30 seconds. Connect a coupler to one end of the new pipe if needed.
  • Copper pipe: Two copper pipes can be connected together by soldering their ends or by using a coupler. Read our article on ball valve soldering for the detailed soldering process employed in the plumbing industry.
  • Step 8: Install the new/repaired ball valve

    Install the new/repaired ball valve properly into the pipe.

    • Copper pipes typically need to be soldered to the valve. Read our article on ball valve soldering for detailed instructions on how to solder a ball valve to a copper pipe.
    • For installing a ball valve to a PVC pipe, cover one end of the pipe using pipe dope and insert the ball valve into the pipe. Then brush pipe dope to the other connecting end of the pipe and insert the other port of the valve.
    • Welded connections are used for ball valves where zero leakage is crucial for high-pressure and high-temperature applications. Welded connections are permanent and should be carried out only by trained professionals.
    • Threaded connections are useful to install small valves to pipes. Typically, the valve has female threaded ends that connect to a male threaded component. In some cases, the valve has male threaded ends or one male threaded end and the other a female threaded end. Threaded connections can either be straight or tapered. Straight connections often require an O-ring that compresses to ensure a tight seal between the valve and the pipe. The tapered thread does not require an O-ring to achieve a tight seal. Both types of thread can use pipe tape or a sealant between the male and female thread, which serves as a lubricant, provides sealing, and prevents metal-to-metal contacts that cause wear.
    • Ball valves with flanged connections are quite easy to install and can be easily removed for cleaning and maintenance without affecting other parts of the pipe network. They are very common in industrial applications. The flanges are solid metal plates with holes through which bolts and nuts are placed to tighten the valve to the pipe.

    Step 9: Test the ball valve installation

    Turn on the water supply and faucets that were previously turned off for the installation. Check for leaks in the pipes. If there are no leaks, the broken walls that contain the pipes can be closed. If the pipes leak, go back into the steps and make the proper connections required.

    If the wall had to be cut into, place the part back and paint over it with spackle. If the valve was below the sink, just close the cabinets.

    FAQs

    Can you replace a gate valve with a ball valve?

    Yes, a ball valve is superior in terms of performance compared to a gate valve; hence, it is a good idea to replace a gate valve with a ball valve if needed.

    Can ball valves fail?

    Yes, a ball valve can fail due to a damaged seal (the valve won’t close fully) or foreign particles entering the valve (the valve gets stuck).

    What is the life expectancy of a ball valve?

    The average life expectancy of a ball valve is 8-10 years. Ball valves get worn out due to continuous rotation.

,

ISO 5211 For Industrial Valves

ISO 5211 is an international standard that specifies the flange dimensions, driving component dimensions, and torque reference values for part-turn actuators that connect to industrial valves like butterfly and ball valves. The standard also defines the different types of drive inserts used for these actuators. This article concentrates primarily on ISO 5211 standard and the other relevant ISO standards used for ball valves and butterfly valves.

ISO 5211 standard

Modern valve designs are compliant with an ISO mounting interface. The actuator can be mounted directly to the valve without a bracket and drive log, thus saving time, hassle, and money. The highlight of following a standard like ISO 5211 is that the user can buy the parts from any manufacturer and then mix and match the valve and actuator and replace a single part if needed.

ISO 5211 is an international standard that specifies requirements for the attachment of part-turn actuators (with or without gearboxes) to industrial valves. ISO 5211 specifies the following parameters:

  1. The flange dimensions necessary for attaching part-turn actuators to industrial valves or intermediate supports.
  2. The driving component dimensions of part-turn actuators necessary to attach them to the driven components.
  3. The reference values of torques for interfaces and couplings.

Flange dimensions

Flanges for part-turn actuators (Figure 2 labeled 1) comply with the dimensions shown in Figure 2 and Table 1. The flanges can be attached by screws, studs, or bolts. Holes for the studs, screws, or bolts are equally spaced apart and positioned off-center (see Figure 3 and Table 3), and conform to the requirements of ISO 273. ISO 273 specifies the clearance hole diameters for general purpose applications. These values are from bearing area calculations connected to ISO bolt and nut product standards.

Flange dimensions of a part-turn actuatorFigure 2: Flange dimensions of a part-turn actuator

Table 1: Flange dimensions (in mm)

Flange type d1 d2 d3 d4 h1max h2min No. of bolts/studs
F03 46 25 36 M5 3 8 4
F04 54 30 42 M5 3 8 4
F05 65 35 50 M6 3 9 4
F07 90 55 70 M8 3 12 4
F10 125 70 102 M10 3 15 4
F12 150 85 125 M12 3 18 4
F14 175 100 140 M16 4 24 4
F16 210 130 165 M20 5 30 4
F25 300 200 254 M16 5 24 8
F30 350 230 298 M20 5 30 8
F35 415 260 356 M30 5 45 8
F40 475 300 406 M36 8 54 8
F48 560 370 483 M36 8 54 12
F60 686 470 603 M36 8 54 20
Positions of holesFigure 3: Positions of holes

Table 2: Position of holes

Flange type ⍺/2
F03 to F16 45°
F25 to F40 22.5°
F48 15°
F60

Drive inserts

Drive inserts allow the actuators to directly mount to the valve in accordance with ISO 5211. Direct mounting eliminates the need for a coupling-type mounting kit and significantly cuts the valve/actuator assembly cost. ISO 5211 covers parallel and diagonal square drives, flat head drives, and single and two key drives. These drive inserts are on factory-built actuators or come as separate units. Also, these inserts are easily replaceable at the distributor or end-user level.

Drive inserts for connecting ISO 5211 actuator to butterfly valves: Actuator (A), drive insert (B), Butterfly valve (C)Figure 4: Drive inserts for connecting ISO 5211 actuator to butterfly valves: actuator (A), drive insert (B), butterfly valve (C)

ISO 5211 torque chart

As per the ISO 5211 standard, the maximum torque transmitted through the mounting flange of a butterfly or ball valve should comply with the values listed in Table 3. The values specified in Table 3 are based on bolts in tension at a stress of 290 MPa and a coefficient of friction between the mounting interface of 0.2. Any variation in these defined parameters can lead to variations in the values of torque transmitted. Hence, while selecting a flange type for a particular application, the additional torque that inertia or other factors may generate should be considered.

Table 3: Maximum flange torque values as per ISO 5211 standard

Flange type Maximum flange torque (in Nm)
F03 32
F04 63
F05 125
F07 250
F10 500
F12 1000
F14 2000
F16 4000
F25 8000
F30 16000
F35 32000
F40 63000
F48 125000
F60 250000
F80 500000
F100 1000000

Designation

Part-turn valve actuators that comply with ISO 5211 standard can be designated as shown in Table 4.

Table 4: ISO 5211 valve designation

Flange designation Spigot identification Drive identification Drive dimensions (in mm)
Flange types given in Table 1 Y: with spigot 

N: without spigot

V: Single key drive 

W: Two key drive

L: Parallel square drive

D: Diagonal square drive

H: Flat head drive

The actual dimensions of the drive in mm

Example

Consider a part-turn actuator with the following designation:

EN 150 5211 – F07 – Y – V – 22

The designation can be decoded as follows:

  • F07: Flange type
  • Y: With spigot
  • V: Single key drive
  • 22: 22 mm drive diameter

Therefore, EN 150 5211 – F07 – Y – V – 22 identifies a part-turn actuator attachment in accordance with ISO 5211 standard with F07 flange type, spigot and single key drive with a 22 mm diameter. Please note that marking the designation on the actuator is not mandatory. Refer to the ISO 5211 document for more information on the dimensions of drive components for different types of drive inserts.

Additional features of ISO 5211 actuators

ISO 5211 direct-mounted valves come with additional features like a blow-out proof stem design, handles with an inherent locking device, or an anti-static design. In a ball valve, an anti-static design eliminates the static charge generated on the ball due to friction. The design protects the valve against sparks that can ignite the fuel flowing through the valve. ISO 5211 actuator options for modulation DPS (Digital Positioning System) or fail-safe BSR (Battery Safety Return) are also available.

Other ISO standards for butterfly valves

ISO 5752

ISO 5752 standard for butterfly valves specifies the basic series of face-to-face and center-to-face dimensions for two-way metal butterfly valves. Each basic series applies to flanges of mating dimensions conforming to the equivalent EN or ASME flange series.

The face-to-face dimension is the distance between the two gasket contact surfaces. (Figure 5 left side). The center-to-face dimension is the distance between the plane at the extremity of either body end port and perpendicular to its axis and the other body end port axis (Figure 5 right side).

Face-to-face dimension of butterfly valve denoted by ‘a’ and center-to-face dimension denoted by ‘b.’Figure 5: Face-to-face dimension of butterfly valve denoted by ‘a’ and center-to-face dimension denoted by ‘b.’

ISO 10631

ISO 10631 specifies the general requirements for design, materials (e.g., steel, cast iron, ductile iron, copper alloy), pressure/temperature ratings, and testing for butterfly valves having metallic bodies for use in flanged or butt-welding piping systems.

IS0 16136

ISO 16136 specifies the requirements for the design, functional characteristics, and manufacture of butterfly valves made of thermoplastic materials intended for isolating and control service, their connection to the pipe system, the body materials, and their pressure/temperature rating between − 40 °C and + 120 °C, for a lifetime of 25 years, and also specifies their tests after manufacturing.

Other ISO standards for ball valves

ISO 7121

ISO 7121 specifies the requirements for a series of steel ball valves suitable for general-purpose industrial applications. The standard covers ball valves of nominal sizes and is applicable to Class 50, 300, 600, 800, and 900 pressure designations. It includes provisions for ball valve characteristics as follows:

  • flanged and butt-welded ends in sizes 15 ≤ DN ≤ 600 (1/2 ≤ NPS ≤ 24)
  • socket welding ends in sizes 8 ≤ DN ≤ 100 (1/4 ≤ NPS ≤ 4)
  • threaded ends in sizes 8 ≤ DN ≤ 50 (1/4 ≤ NPS ≤ 2)
  • body seat openings designated as full bore, reduced bore, and double reduced bore
  • materials
  • testing and inspection.

ISO 17292

ISO 17292 specifies the requirements for a series of metal ball valves suitable for petroleum, petrochemical, natural gas plants, and related industrial applications. It includes provisions for testing and inspection and for valve characteristics as follows:

  • flanged and butt-welded ends, in sizes 15 ≤ DN ≤ 600 (½ ≤ NPS ≤ 24)
  • socket welding and threaded ends, in sizes 8 ≤ DN ≤ 50 (¼ ≤ NPS ≤ 2)
  • body seat openings designated as a full bore, reduced bore, and double reduced bore
  • materials

ISO 23826

ISO 23826 specifies the design, type, testing, marking, manufacturing tests, and examination requirements for ball valves used as:

  • closures of refillable transportable gas cylinders, pressure drums and tubes
  • main valves for cylinder bundles
  • valves for cargo transport units [e.g. trailers, battery vehicles, multi-element gas containers (MEGCs)], which convey compressed gasses, liquefied gasses, and dissolved gasses.

However, the standard does not apply to ball valves for oxidizing gasses, toxic gasses, and acetylene for single gas cylinders, pressure drums, and tubes.

,

The floating ball valve vs the trunnion mounted ball valve

‘’Floating ball’’ and ‘’trunnion ball’’ are concepts which are used generally. But what are the exact difference between these two designs and when to use which one?

The most important difference between these two design is the construction of the ball and the way in which it is assembled inside the valve body. A trunnion ball is attached and centred inside the valve body through both a top shaft -the valve stem- and a bottom shaft – the trunnion. A floating ball is attached to the valve body only through the valve stem. As a result, the floating ball ‘’floats’’ in the valve seats.

In a floating ball design the ball is pushed against the downstream seat by the in-line pressure, resulting in tightness. When operated from closed to open position, the ball is to be rotated against both the in-line pressure (∆p) and the friction of the seats. In other words: the torque needed to operate the valve is created by both in-line pressure and the nature of the valve seats. The amount of torque required increases significantly when operating pressure (∆p) and/or valve size increase, and/or whenever the nature of the seat is made more robust. The latter applies in case of a metal seated valve design.

Floating ball
Trunnion ball

In a trunnion design, the ball is inserted in a central bottom shaft which is called the trunnion. The ball is fixed between the stem and the trunnion, which inclines that the ball is not floating but fixed and centred. The inline pressure presses the seats against the ball, causing the tightness. This inclines that during operation, the ball does not have to be rotated against the in-line pressure (∆p) and the valve seats, but that is solely needs to be rotated against the pressure of the seats.

 

Floating ball & trunnion ball

As a result, the required torque of a trunnion mounted ball valve is generally lower than the torque required of a comparable floating ball valve. For example: a DN200 metal-seated floating ball valve would require a significantly larger actuator than a DN200 comparable trunnion valve, leading to significantly lower costs of the overall package. Also, in general the trunnion seat design offers higher stability which makes it more suitable for extreme conditions and especially varying pressure levels.

So, the trunnion-mounted ball valve is more suitable for high pressure applications and bigger dimensions compared to the floating ball. Another advantage of the trunnion design vis-à-vis the floating design is the fact that a trunnion generally is included with a drain or bleed connection, making it suitable to function as a dual safe device. Furthermore, it functions as an relief valve automatically whenever the pressure in the central cavity is higher than the spring force of the seats. When this happens, the seat springs relieve automatically in order to drain the excess pressure back into the main line. Because of these reasons, the trunnion is commonly used in offshore- & oil & gas applications, where extreme conditions pose the standard.

Off course, a large disadvantage of the trunnion compared to the floating design is associated with its costs; which are significantly bigger. Because of these costs, trunnions are used solely when they have to be used.

Our specialist happily assist you in advising the right ball valve design for your application.

,

Pressure seal Gate Valves

The high pressure gate valve, also called pressure seal gate valve, is designed and manufactured according to ASME B16.34, API600, and the valve has the characteristics of beautiful appearance, compact structure and reliable seal. It is suitable for various pipelines of Class900 to Class4500.

 

Operating principle pressure gate valve:
Before the high pressure gate valve is boosted, turn the tightening bolt to raise the bonnet, so that the initial formation between the bonnet, the segment ring, and valve body created sealing condition – preload pressure on the sealing surface. When the media pressure increases, the sealing pressure between the bonnet, segment, valve body increases gradually with the increase of medium pressure. In self-tight sealing, the working seal pressure on the sealing surface is synthesised by two parts: one is the pre-tight seal pressure, and the other is the pressure formed by the pressure of the medium. It should be emphasised that: the media pressure in a self-tightening seal always tends to increase the preload seal pressure to increase sealing performance. The higher the media pressure, the greater the operating seal pressure and the better the sealing performance.

 

The main features of the high pressure gate valve:
①    The self-sealing structure can make the connection between the valve body and bonnet of the high-pressure valve tightly structured, labor and material saving, safe and reliable.
②    The high pressure gate valve uses a combined structure at the bonnet pressure self-sealing, to achieve a linear seal, while its seal ring uses Austenitic stainless steel, anti-corrosion, extends the life of the use, thus ensuring that the valve seal is not leaking under high pressure difference.
③    When the high pressure gate valve is in the 2500LB and above, the inner cavity of the valve body and the contact area of the sealing ring are welded with stainless steel material to avoid the valve body sealing area being eroded by air and water under high pressure difference, which may cause pitting leakage, thus ensuring the safe and long-term operation of the valve.

 

Self-sealing structure of the high pressure gate valve:
The pressure seal gate valve uses a sealing structure combined with the packing outer seal and the internal pressure self-sealing at the stem seal to ensure that the medium does not leak. The outer seal of the stem is filled with polytetrafluorene or O-ring packing, which is pressed tightly with packing gland. Under the action of media pressure, the upward pressure is generated, the greater the pressure of the medium, the greater the sealing force, this structure is suitable for high media.

Gate Valves

 

Gate Valves – Pressure-seal

Size 3″ to 42″ (80 mm to 1050 mm)
ASME Class Class 600 to 2500
Design Standard ASME B 16.34, API 600

Beyond Standards:

  • Pressure-seal Gate Valve design conforms to ASME B 16.34.
  • The design was successfully validated by conducting in-house High Pressure High Temperature (HPHT) Gas Tests on ultra-high pressure valve prototypes.
  • Flow Interruption Test successfully conducted on 8″ Class 600 Pressure-seal Gate Valve suitable for Main Stream Isolation Valve (MSIV) service in nuclear power plants – at Areva, Germany.
  • Fugitive Emission – 14″ Class 2500 Pressure-seal Gate Valve (test pressure of 431 bar at ambient and 289 bar at 400 degree C) has been tested successfully as per ISO 15848-1, endurance Class CO2 and Tightness Class BH
  • CE Marking – Meets requirements of Pressure Equipment Directive 2014/68/EU, Annexure III, Module H
  • Atex – Meets requirements of Atex Directive 94/9/EC (ATEX), category 2 non-electrical equipment
  • SIL3 Safety Integrity Level for Automated Valves
  • Pressure-seal Gate Valves (up to Class 2500) used in Oil & Gas industry tested to ISO 15848-1 Class BH
  • Pressure-seal Gate Valves successfully tested to Shell Design Validation Test 77/300 and witnessed by Shell Inspectors

Features that Add Value:

  • Valves in intermediate classes reduce total cost of ownership
  • Pressure-Seal mechanism utilizes line pressure to enhance seal; ensures sealing integrity at higher operating pressures.
  • Higher hardfacing thickness (3 mm) to ensure consistent hot hardness
  • Disc guides hardfaced for longer life
  • Customised deposition process in F91/ C12A valves to avoid delamination of hardfaced surfaces
  • Live loading of bonnet bolts for F91/ C12A valves
  • Special high purity graphite packing (seven rings) provided for pressure rating > Class 2500 in Power applications
  • Live loading of bonnet bolts and gland bolts for all valves in F91/ C12A construction

Versatile Solutions:

  • Available in a cast and forged steels and exotic metallurgies for a wide variety of applications
  • By-pass arrangement provided for over-pressure protection based on customer requirement
  • Accessories: Heat Dissipation Bonnets, Dashpot Arrangement, Limit Switches, Extension Spindles and Position Indicator
  • STV Valve Technology Group Co., Ltd is a professional leader China 1500Lb cast steel Pressure Seal Gate valve,CAST STEEL GATE VALVE 1500Lb ,1500 lb Cast Steel Gate Valve Pressure Seal ,Flange Gate Valve,High Pressure Gate Valve,Pressure Seal Gate Valve Manufacturer with high quality and competitive price.
,

What is a segment ball valve?

A segment ball valve is a type of ball valve with a V-notch contour segment in the ball. Segment ball valves are control valves that have good control, rangeability, and shutoff capability. This valve is capable of producing high capacity and non-clogging flow control. Segment ball valve manufacturers design the ball with special contours to enhance capacity and shutoff integrity and seal life. Segment ball valves are known to be economical and of high performance. These valves can be of a wide variety such as from small and lightweight valves to large heavyweight valves. The lightweight valves are easy to mount and handle. The heavy-weight segment ball valves are used in harsh environments to deliver optimized control and for on/off applications. Due to such features, segment ball valves find use in many industries such as paper and pulp industries, refinery, and petrochemical services among others. These valves are durable and reliable even when used in harsh environments.

Figure: Segment Ball Valve Torque

Figure: Segment Ball Valve Material

Components of segment ball valve

Some of the main components of segment ball valve are:

Valve housing 

This is the component that is used to house all internal components of the segment ball valve. This part is made using rigid and hard materials, thermoplastic lined metallic materials, or thermoplastics to protect components of the valve. This part also allows for the external components to access the controlling mechanism to rotate the ball thus opening or closing the flow.

Segment ball 

This is a V-shaped contoured ball. This segment ball has is used as the opening for the fluid to flow. The segment ball provides shear action to produce flow characteristics.

Shafts 

The shafts are used to connect the segment ball valve control mechanism to rotate the segmented ball. The shafts are made with packing rings and O-rings that help to seal the shaft as well as a bonnet to prevent leakage. The shaft can be operated manually, using a pneumatic or electric actuator.

Seat 

The seat is used to provide sealing between the segment ball valve body and segment ball.

Bearing seals

These seals protect metallic bearings from fluid ingress.

 

How does a segment ball valve work? 

A segment ball valve is a quarter-turn ball valve. It operates similarly to an eccentric plug valve. The valve has shafts that help to enlarge the center flow path. A driving shaft connects to one side of the ball and a follower shaft connects to the opposite side. When the driving shaft rotates, the segmented ball rotates exposing the flow path via the V-notch. The use of V-notch enhances a large range of fluid flow because of a small area of flow at low travel and maximum travel allows a large flow area. Segment ball valves can have two end connections for the body that is the flanged and flangeless connections.

 

Types of segment ball valves

Side entry segment ball valve 

The side entry segment ball valve is a valve of high performance. This valve is made based on the O type of ball valve. Side entry ball valve helps to convey solid-gas and solid-liquid two-phase medium. This means that this valve can control the flow of solids and liquids or gases and solids conveniently.

Features of side entry segment ball valves are:

  • Easy operation. This is because the segment ball valve can be moved away from its seat with no contact thus having small starting torque.
  • The side entry segment ball valve has a straight-through valve body which makes it keep the medium flow linear when it is fully opened. This helps to reduce energy loss compared to other valves.
  • The side entry segment ball valve has a double eccentric structure making the segment ball valve perfectly sealed and tightly closed.
  • When the side entry segment ball valve is closed, its shear force can remove foreign matter thus it is known for anti-scaling performance.

 

Figure: Segment Ball Valve Flow Rate

Top entry segment ball valve 

The top entry segment ball valve is a valve suitable for use in pharmaceutical, chemical, and food processing where excellent and fast cleaning is needed. This segment ball valve has certain advantages which make it preferred in industries that need clean products such as:

  • Easy and quick cleaning of the interior and piping parts without removing the valve.
  • Quick and easier replacement of worn out parts.
  • It does not have spare parts inside the body

 

Features of segment ball valves 

Integrated valve body 

Segment ball valve manufacturers design the valves in a one-piece body. This helps to provide greater rigidity against fluctuations in pipe loads. These valves have a side entry structure that enhances rigidity and makes it hard for leakage and deformation despite high stress due to fluid and closing torque.

Segment ball 

Segment ball valve manufacturers make the valve with a V-port segment ball. This helps to provide a wide range of abilities to control fluid flow. This makes the valve suitable for throttling applications with high consistency and syrup services. The segment is designed so that it can provide optimum flow and its hard-coated spherical face prevents galling.

Self-lubricated bearing 

A segment ball valve designs employ double bearings on the lower and upper valve stems to provide good stability. This makes the contact surface with stem bigger and enhances low coefficient of friction and high carrying capacity as well as reduce operating torque.

Soft and metal sealing seat 

Segment ball valve manufacturers make the valves with either PTFE or metallic seats. The material depends on the intended medium of flow. Metal seats sealing faces are overlaid with hard and strong alloy while the surface of the ball is hardened using hard chromium plated, plasma nitriding among others. This helps to enhance the service life of the sealing face as well as improve temperature resistance. Seats made of PTFE or RPTFE have excellent seal performance, have good resistance to corrosion, and are of wide applications.

Economical practicality 

Segment ball valves manufacturers aim to make these valves as lightweight as possible and of small stem torque. Such critical design parameters make the valve be installed with small electric or pneumatic actuators, and be cost-effective relative to small size or other class of regulating valves.

 

Selection of segment ball valves 

Type of operation 

This is the case where one is supposed to decide the type of mechanism to power the actuator. The actuator can be manual, pneumatic or electric. The actuator type depends on the power source available for example, electricity or compressed air as well as required torque. Pneumatic actuators provide high torque values while the electric actuators have a high initial cost but their operating cost is lower relative to pneumatic ones.

Housing material 

The segment ball valve should be such that the material used to make the housing is compatible with the media being controlled. Different materials have different properties such as:

Brass is suitable for non-corrosive and neutral media, durable, resists high temperatures, not suitable for salty water, acids and chlorides.

Stainless steel is resistant to chemicals, abrasion-resistant, resistant to high temperatures, but not good to chlorides, hydrochloric acids, bleach, and bromine.

PVC material is good for corrosive fluids like acids, salty water, bases, and organic solvents. However, it is not resistant to chlorinated and aromatic hydrocarbons. PVC temperature and pressure resistance are lower relative to that of brass and stainless steel.

Pressure rating 

The segment ball valve selected should be able to withstand maximum and minimum fluid pressure during operation. The pressure rating of the segment ball valve will be determined by the material used to make the housing. Strong materials like stainless steel can withstand high pressure compared to PVC material.

Working temperatures 

Different segment ball valve materials can withstand different levels of temperature from minimum to maximum values. The temperature range of the segment ball valve is determined by the seal and housing material. Brass material can withstand temperatures in the range 20°C to 60°C, stainless steel material can withstand temperatures in the range of -40°C to 220°C, while PVC segment ball valve can withstand temperatures between -10°C to 60°C.

Standards and approvals 

Depending on the use of the segment ball valve, the valve manufacturers may need to follow certain standards from regulatory bodies. This is often required for valves to be used in drinking water, food products, pharmaceuticals, or gas.

 

Segment ball valve actuators 

The segment ball valve can use different types of actuators to open and close. The types of actuators that can be used by these valves include manual, pneumatic actuators, and electric actuators.

Manual segment ball valve actuator 

This is a segment ball valve actuator that is powered by a human hand. This type of actuator has a handle where the operator applies torque to turn the handle and thus turn the valve mechanism to open or close the valve.

Rack and pinion pneumatic actuator 

Rack and pinion pneumatic actuators are actuators used in segment ball valves for opening, turning, and closing the valve as it may be needed. These actuators convert the energy of compressed air by using pneumatic cylinders to oscillating rotary motion. These actuators require dry, clean, and processes gas to provide by a central compressed air station.

Electric actuator

These actuators are used in segment ball valves to control the closing and opening of the valve. These actuators can provide rotary or linear motion. As the name suggests, these actuators use electricity to enhance their work. The torque to open/close the valve is transmitted using a shaft to open or close the valve.

 

Applications of segment ball valves

  • Segment ball valves are used to control flow in paper and pulp industries.
  • These valves are used to control the flow of chemicals in chemical plants.
  • They are used in sewage treatment plants as they can work on solid particles.
  • They are used in power industries to control the flow of heating and cooling fluids.
  • They are used in petroleum industries as they can withstand flammable products.
  • Segment ball valves are used in pharmaceutical industries to regulate the flow of production compounds.
  • They are used in food industries because of their ease to clean and maintenance.

 

Advantages of segment ball valves 

  • Segment ball valves have high efficiency.
  • These valves are simple in design.
  • Segment ball valves design makes them of small weight and volume.
  • These valves are easy to disassemble and repair.
  • Segment ball valves design makes them have a perfect seal.
  • They can provide low-pressure drop and high flow rates.
  • The segment ball valve opens and closes quickly.
  • These valves are easy to clean.

 

Disadvantages of segment ball valves 

  • Cavities around the seat tend to cause blockage.
  • When used in solid particles it can get eroded and thus start leaking fluid and failing.

 

Troubleshooting segment ball valve 

Gland packing leakage 

  • Loose gland nuts. Tighten the loose gland nuts.
  • Worn out gland packing. Replace gland packing.
  • The stem is corroded or scored. Clean stem or replace it as well as gland packing.
  • The stuffing box is corroded. Clean it and replace gland packing. The segment ball valve can be replaced if it has excess corrosion.

Leakage on the bottom plate gasket 

  • Loose nuts. Tighten the nuts.
  • The gasket is damaged. Replace the gasket.
  • Corrosion/damage in the seal area. Clean corrosion or replace the plate and body depending on the level of damage.

Through bore leaking fluid 

  • The segment is not in the full closing position. Fix close limit travel in the actuator.
  • Misalignment between seat and segment. Loosen gland packing to center the segment. Make sure to tighten the gland packing again after alignment so it has enough torque.
  • Entrapped or solidified media. Clean seat spring and sealing surfaces.
  • Seal seat damaged. Replace the damaged seals.
  • The segment or seat is damaged. Replace as necessary.

High segment ball valve torque 

  • Over tightened gland nuts. Reduce the torque on the gland nuts to the levels recommended by the segment ball valve the manufacturer.
  • Operating segment in the reverse direction thus disengaging it from the seat. Make liner retainer lose to re-engage the seat and the segment in a closed position. Enhance the liner retainer torque after segment and seat are aligned.
  • Actuator/operator misaligned with the valve stem. Loosen fasteners and modify the mounting base to be parallel and ensure the operator is centered. Tighten the fasteners.
  • Damaged bearing. Replace it.
  • Damaged segment or seat. Replace as necessary.
  • Accumulated or solidified media. Remove the media from the valve cavity, seat, segment, and clean sealing surfaces.
  • The segment ball valve was installed in the wrong orientation. The valve needs to be installed according to the flow indicator tag.

Summary 

A segment ball valve is a ball valve that makes a quarter turn to open/close the fluid flow. This valve has a hollow spherical ball segment supported by bearing and shaft at the actuator side of the valve. The other end of this valve has a bearing and a post. The segmented ball rotates about a pivot to make a continuous single upstream seal in a closed position. The seal of this segment ball valve is obtained through a flexible elastomer or flexible seat ring that presses against the spherical segment. Segment ball valves body is made of strong materials mostly stainless steel with flangeless or flanged construction.

Segment ball valves can be classified as side entry segment ball valves and top entry segment ball valves. These valves employ a design and technology that helps them to work even in viscous fluids and slurries. These valves are used in many industries such as petrochemical, pharmaceutical, food processing, sewage treatment, chemical processing among others. The segmented ball valves have many applications due to their superb features such as ease of cleaning, ease of repair and maintenance, simple design, small size and weight, corrosion resistance, and high strength to stand slurries. Important parameters to consider when purchasing a segment ball valve are actuator type, pressure rating, working temperatures, housing materials, standards and approvals.

,

what is check valve working principle of check valve

A check valve is a type of valve which are designed to allow the flow of fluid in one directions by raising the disc by a pressure of fluid or it interrupt the flow in reverse direction by automatic lowering a disc. Definition of valve is,it is a mechanical device which are designed to control or interrupt […]

,

Cast Steel Gate Valve 600LB,10 Inch,API 600

Cast Steel Gate Valve 600LB

We just delivered some Cast Steel Gate Valve 600LB to one of the South America clients.

Descriptions

Product Name Cast Steel Gate Valve 600LB,10 Inch,API 600,Flanged End
1. Material WCB
2. Size 10”
4. Port Full Port
5. Working Pressure 600lb
6. Connection Ends RF
7. Working Temp. -29~425ºC,
8. Suitable Medium Water, Natural Gas, Oil and some corrosive liquid
9. Operated Handwheel
10. Inspection & Testing According to API598

QTY:5PCS

If you are interested in the above valves, pls freely contact us via email:[email protected]

Kindly, please find the attached GA drawings and pictures of valves.

Cast Steel Gate Valve 600LB

,

What is the different Plug valve and Ball Valve?

Any production arrangement where one needs to monitor, regulate, or alter the flow of a liquid media through various piping sections of a system must include control valves. Every piping system needs control valves as a crucial component.

Control valve types include ball and plug valve models that carry out comparable functions and are frequently used interchangeably. They remain unique in terms of the overall structure, function, and applied applications. This guide lists all the major differences between plug vs ball valve and other relevant information that can help people in choosing the ideal valve type for the desired applications from reliable industrial valve suppliers.

What Is Plug Valve ?

China Plug valve

A plug valve rotates in a 90-degree turn and it regulates flow using a tapered or cylindrical stopper. The disc has a path for the flow to pass through and is shaped like a plug. The bore passage is in the flow while it is open. The heavy part of the stopper restricts the flow when it is swiveled 90 degrees from the open position.

In situations where speedy operation is necessary, it is utilized in place of a gate valve. Typically, plug valves are chosen for low-pressure and low-temperature applications. For usage with corrosive chemicals, plug valves that have body linings made of polytetrafluoroethylene (PTFE) can be utilized.

What Is Ball Valve ?

Ball valves are on or off mechanisms with a quarter-turn. The valve’s movable ball, which is located in the center, regulates the flow of gas or fluid media. The rotary ball, which serves as the pivot, is made with a hole in the middle. The ball is swiveled to open or shut down the valve via a stem on its top. The stem can be swiveled manually or automatically using levers.

Steel, bronze, iron, brass, or PVC are the materials that ball valves are most frequently composed of. Multiple ports, or apertures in the valve, are possible with ball valves. Two-port ball valves are utilized for conventional on or off control and retain double ports. Applications that need more than one media source or that require diverting media in various directions employ multi-port valves, such as 3-way valves, 4-way valves, etc.).

Plug Valve Vs Ball Valve: Major Differences

Check out the main differences between ball valves and plug valves.

Different Types of Valve

The different types of plug valves vs ball valves are listed below.

  • Plug Valves

Most plug valves are full bore, especially rectangular port valves. Round port and diamond port valves can also be used, but their usage is quite limited to low-pressure applications. Lubricated plug valves and non-lubricated plug valves are the two types of plug valves.

The plug of lubricated plug valves is typically made of metal and possesses a lubricant chamber that maintains lubrication all the time. The lubricated plug moves more easily, experiences less friction, and is corrosion-resistant. Lubricated plug valves can deal with larger and high-temperature applications.

  • Ball Valves

A form of control valve that has numerous applications is the ball valve. In accordance with their construction and purpose, they are available in a variety of sizes and shapes. Because of this, they are currently among the valves used most frequently in the pipe industry. There are ball valves with full and reduced bores.

Full bore ball valves enable unrestricted medium flow. As the bore is less than the diameter of the pipeline, reduced bore or reduced port valves restrict the media flow. Ball valves can be mounted on a float or trunnion. Floating ball valves are utilized in applications where a bi-directional shut-off is necessary. High-pressure, high-temperature applications use ball valves with trunnion installation.

Structure Of The Valves

The structural difference between plug and ball valve is mentioned here.

  • Plug Valves

A plug valve, which has a conical tapering or cylindrical disc, regulates the flow of liquid through one or additional sideway-moving passageways. The hollow tunnel aligns with the flow when the valve is open, enabling the liquid to flow freely. The plug is realigned to restrict the flow after a 90-degree rotation shuts down the valve.

The plug valve is a compact, straightforward device that alters the flow of media by cutting or dispersing. Although some specialized varieties of plug valves can function in high-temperature situations, their primary applications are in medium or low-pressure and low-temperature environments.

  • Ball Valves

The ball valve is an altered plug valve that has a spherical disc and a circular bore channel. The port is a hole that exists in the disc. The valve is open, and the medium seeps through it when the port is in line with the dual ends of the valve. The flow ceases when the port is vertical to the valve ends.

Ball valves are useful for a range of systems due to their small structure, simple use and upkeep, and compatibility with water, acids, natural gas, and solvents. Even in the extreme operating environments of media like hydrogen peroxide, oxygen, methane, or ethylene, ball valves are an excellent choice. Traditional gas shutdown ball valves are best suited for open and close operations, while more sophisticated or customized models also deliver flow control and throttling features.

Function

The plug valves and ball valves operate with a rapid 90-degree rotation of the actuator, making them quarter-turn valves that open and close. Their main function is sealing and shut-off procedures. The plug valve’s sealing surface is substantially greater than a ball valve. Better sealing properties result from this, but it also entails greater torque and more work during operation.

Ball valves are somewhat simpler to regulate than plug valves because of their torque-free functioning and lightweight feature. Despite the possibility that their tiny sealing surface may result in poor sealing performance, developments in chemical sealants and seal injections have helped to address this flaw.

Construction

Both plug and ball valves have bored discs in the middle. A ball valve features a spherical disc with a hollow center. A plug valve is composed of a conical or cylindrical disc with drilled apertures. The disc or ball in a plug valve is larger than the disc or ball in a ball valve, and it enables a plug valve to provide a tighter shut-off than a ball valve. Plug valves are also more compact than ball valves. Plug valves can be effortlessly positioned in tinier departments because of their low footprint.

Distinct Principle

The plug valve gave rise to the ball valve. They both rotate at 90 degrees, and based on whatever “plug” is being used, it can be a plug or a ball with a circular through hole or channel running through its center. The ball and ports should be arranged so that the sphere will appear as a sphere at the intake and outlet to stop the flow when rotated by 90 degrees.

The upper components of the plug valve, the conical plug, and the body surface created by the conical pressure are sealed with packing in the space between the plug and the body. Since plug valves typically do not retain bonnets and the handles are exposed outdoors at the end, they are easy to use and frequently inexpensive.

Control Capacity

A number of actuators, such as manual, pneumatic, hydraulic, electric, and other types, can be used to operate ball valves. They are easy to open and shut down and need little force, even while functioning in high-pressure circumstances.

Plug valves can be opened and closed manually or electrically using actuators. Despite being relatively expensive to install, pneumatic actuators can also be utilized to regulate them. Plug valves in high-pressure applications may be challenging to open and stop due to the substantial amount of torque. Because of this, plug valves are rarely used in larger applications.

Cost

The plug valve costs considerably less than ball valves. The “plug” is completely covered by the bushing, which deters wear on the valve body and plug. By changing the bushing and top seal, which can withstand 300°C of continuous use, the valve can be updated and repaired.

All other components of the plug valve are cast in a single step, and only the top face and flange need to be processed. However, the internal body does not need processing. Comparing the plug valve to the ball valve, there is a clear cost advantage of choosing plug valves.

Lifespan

In general, ball valves last longer than plug valves. A plug valve possesses a bigger surface area in contact with the medium and is required to deal with more torque. It shows that the valve has undergone greater deterioration and is more vulnerable to corrosion.

Ball valves have unique features that stop the medium from constantly contacting the disc. Even though there will be more moving parts, the low torque ensures that it will last longer with little to no wear and tear.

Customization

  • Check Valves

Even though it is only partially achievable, plug valve customization is also an option. It is possible because of their basic design, which offers little potential for development. There are many sizes of multi-port plug valves, varying from two to five ports.

Multiport valves need to be used carefully because they might not create a very tight shut-off. The expense of all additional plug valve modifications, like the addition of electric or pneumatic actuators or anti-friction components, is relatively expensive.

  • Ball Valves 

Compared to plug valves, ball valves offer a significant increase in adjustability. It is because there are so many different types of ball valves accessible in the marketplace. Ball valves come in unidirectional, bidirectional, and multidirectional varieties.

They can retain one, two, or three pieces with one or more ports. Ball valves with split-body, top-entry, end-entry, and side-entry options are accessible. Ball valves can also be equipped with double block and bleed capacities.

Maintenance

Both ball and plug valves require routine upkeep to operate effectively. Plug valves contain fewer moving components and simpler construction, making them relatively easy to maintain. Additionally, you can simply reach the remaining valve body for easy cleaning after eliminating and cleaning the plug.

Ball valves are more difficult to clean since the ball or disc is buried deep inside the valve and is hard to access. The ball valve’s body chamber may gather significant debris over time, adding to the problems of cleaning and maintaining it.

In comparison to ball valves, plug valves provide low-cost operations. It is so that the valve body and plug would not wear out as the plug fits underneath the bushing with a plug valve. In order to update and maintain the valve’s optimal function and

Are Plug Valves Better Than Ball Valves

manual Ball Valve
Source: Unsplash

Here are the top three primary reasons that explain why the plug valves are better compared to ball valves:

  • Plug valves cannot be replaced by ball valves, but the plug valves have the capacity to replace ball valves.
  • Plug valves are simpler to use. Contrarily, ball valves have a space between the body and the ball. Some medium stays in the void after the ball valve is placed and is shut down. The medium must be cleaned before the machine is put back into operation. It is a common issue in chemical and food manufacturing facilities. Ball valves become worthless in critical situations where the medium cannot be thoroughly cleaned due to a prolonged stop period.
  • Plug valves have a full port, meaning that the entire flow is permitted. However, ball valves can have a full port or a limited port.

Plug Valve Vs Ball Valve: How To Choose

By understanding the type of valve application, it can become easy to choose between ball valves and plug valves.

  • When To Acquire Plug Valves 

For bubble-tight shut-off, plug valves are used in liquid applications like vapor, air, gas, hydrocarbon, and others. Since they have a larger surface area and provide unrestricted medium flow, plug valves are frequently employed in slurries, sewage, and mud applications.

In order to ensure good sealing while working with corrosive or hard materials, strengthened plug valves are used. Because of their straightforward operational structure and anti-corrosion qualities, they are the most dependable shutdown option in sensitive applications.

  • When To Acquire Ball Valves

There are many applications for ball valves, and they are used in a variety of equipment, including generator skids, compressor skids, gas feed lines, crude oil plants, LNG plants, industrial gas processing plants, polymer plants, field gas plants, hydrocarbon processing, oil refinery feedstock lines, tank farms, separator skids, and automated process applications.

High-pressure ball valves are necessary for cryogenic, subterranean, and subsea applications. In addition, ball valves made of stainless steel are necessary for brewing, desalination, feedwater, cooling water, and petroleum refining.

Conclusion

Valves come in a variety of types, sizes, lifetime, purposes, and control capabilities. Plug valves and ball valves have the same purpose. They both regulate the flow of gas or fluid using either a straightforward on or off function or a multipath feature.

Due to their flexibility in high-pressure applications, ball valves are excellent choices. Whereas the plug valves can be maintained easily since they have easy construction and not too many moving components. It is possible to acquire ball valves and plug valves in bulk orders from a professional valve manufacturer.

What Is ANSI Flange Rating And Flange Class

Each pipe fitting retains a certain pressure holding ability that is determined by the type and thickness of the metal. A flange is one of the essential parts of a pipe that connects to industrial valves, tools, and other spools of piping and carries the pressure created in the piping system during the operation.

The term “flange pressure rating” refers to a particular classification that specifies the ultimate temperature at which a given flange can withstand a given amount of pressure. The utmost pressure a flange can resist with growing temperature up to a limit for a certain temperature span is indicated by the flange pressure rating or class.

The American National Standards Institute, also known as ANSI, is a nonprofit, independent association that assists in regulating the standards for a variety of goods, services, operations, and personnel. One can be sure to get the appropriate flange given the material and the maximum pressure and temperature to which it will be subjected by looking at the ANSI rating.

Seven flange pressure ratings are delivered by the ASME or ANSI B16.5 standard, which are: 150, 300, 400, 600, 900, 1500, and 2500. Additionally referred to as the flange class, they are identified by the class and observed by any of the dimensionless integers. The terms “pound rating” and “pressure class rating” are also used to describe them.

Here are some vital features of flange classes are:

  • If the flange rating is high, the more pressure and temperature flanged valve can resist.
  • In comparison to flanges with less grades, those with higher values are thicker, heavier, and stronger.
  • Because flange dimensions fluctuate as pressure rating classes change, a flange from one pressure class might not match with a flange from an elevated or lower class.
  • The number of bolts grows along with the pressure rating, boosting the bolt area. By improving the bolt’s capacity to carry force and moment, the gain in bolt area decreases the potential for flange leakage.

What To Know About ANSI Flange Pressure Rating Chart

Flanges, valves, and fittings are governed by a variety of standards, but ANSI pressure ratings are arguably the most widely used set of guidelines. There are seven distinct ANSI flange pressure ratings. The flange will be smaller, lighter, and less robust if the flange rating is less.

140 pounds psi is the most that a class-150 carbon steel flange can resist when exposed to 600 degrees Fahrenheit. A class-300 flange with identical other specifications can sustain 570 psi. With the exact substance and bore size, a class-2500 flange can sustain up to 4730 psi, which is 34 times more pressure compared to a 150-class flange.

ANSI flanges are utilized for all applications other than oil drilling and well heading. For flanges up to 24 inches in diameter, ANSI B16.5 is utilized, and for flanges larger than 24 inches, ANSI B16.47 is employed.

Pressure Rating Designation Of Flanges

The results of the ANSI pressure rating chart are displayed in Class, Lb, or Pound. The designation of the pressure-temperature rating of flanges is class, which is followed by an arbitrary number. There are seven different sorts of flange rating designations, each denoted by a “#”:

  • 150#
  • 300#
  • 400#
  • 600#
  • 900#
  • 1500#
  • 2500#

The pound system is represented by the symbol “#,” which is also symbolized by “Lb.” Numerous designations, including 150 Lb, 150 Lbs, 150#, and Class 150, are used to identify flanges and these all signify the same thing. However, there is just one signal that is accurate, which is “Pressure class.”

All of these signs just represent the idea of a flange’s pressure or temperature capability for valves and are interchangeable. This pressure or temperature performance is crucial since it aids in the selection of the best flange for the circumstances.

A Brief Guide To ANSI Flange Pressure Rating Chart

Check out the details of the ANSI flange pressure ratings chart about class 1 flanges.

Class 150

  • If the temperature for Class 1 150# flange is < 100 degrees Fahrenheit, the maximum pressure for flanges is 285 psi.
  • If the temperature for Class 1 150# flange is 200 degrees Fahrenheit, the maximum pressure for flanges is 260 psi.
  • If the temperature for Class 1 150# flange is 300 degrees Fahrenheit, the maximum pressure for flanges is 230 psi.
  • If the temperature for Class 1 150# flange is 400 degrees Fahrenheit, the maximum pressure for flanges is 200 psi.
  • If the temperature for Class 1 150# flange is 500 degrees Fahrenheit, the maximum pressure for flanges is 170 psi.
  • If the temperature for Class 1 150# flange is 600 degrees Fahrenheit, the maximum pressure for flanges is 140 psi.
  • If the temperature for Class 1 150# flange is 700 degrees Fahrenheit, the maximum pressure for flanges is 110 psi.
  • If the temperature for Class 1 150# flange is 800 degrees Fahrenheit, the maximum pressure for flanges is 80 psi.
  • If the temperature for Class 1 150# flange is 900 degrees Fahrenheit, the maximum pressure for flanges is 50 psi.
  • If the temperature for Class 1 150# flange is 1000 degrees Fahrenheit, the maximum pressure for flanges is 20 psi.

Class 300

  • If the temperature for Class 1 300# flange is < 100 degrees Fahrenheit, the maximum pressure for flanges is 740 psi.
  • If the temperature for Class 1 300# flange is 200 degrees Fahrenheit, the maximum pressure for flanges is 680 psi.
  • If the temperature for Class 1 300# flange is 300 degrees Fahrenheit, the maximum pressure for flanges is 655 psi.
  • If the temperature for Class 1 300# flange is 400 degrees Fahrenheit, the maximum pressure for flanges is 635 psi.
  • If the temperature for Class 1 300# flange is 500 degrees Fahrenheit, the maximum pressure for flanges is 605 psi.
  • If the temperature for Class 1 300# flange is 600 degrees Fahrenheit, the maximum pressure for flanges is 570 psi.
  • If the temperature for Class 1 300# flange is 700 degrees Fahrenheit, the maximum pressure for flanges is 530 psi.
  • If the temperature for Class 1 300# flange is 800 degrees Fahrenheit, the maximum pressure for flanges is 410 psi.
  • If the temperature for Class 1 300# flange is 900 degrees Fahrenheit, the maximum pressure for flanges is 230 psi.
  • If the temperature for Class 1 300# flange is 1000 degrees Fahrenheit, the maximum pressure for flanges is 85 psi.

Class 400

  • If the temperature for Class 1 400# flange is < 100 degrees Fahrenheit, the maximum pressure for flanges is 985 psi.
  • If the temperature for Class 1 400# flange is 200 degrees Fahrenheit, the maximum pressure for flanges is 905 psi.
  • If the temperature for Class 1 400# flange is 300 degrees Fahrenheit, the maximum pressure for flanges is 870 psi.
  • If the temperature for Class 1 400# flange is 400 degrees Fahrenheit, the maximum pressure for flanges is 845 psi.
  • If the temperature for Class 1 400# flange is 500 degrees Fahrenheit, the maximum pressure for flanges is 805 psi.
  • If the temperature for Class 1 400# flange is 600 degrees Fahrenheit, the maximum pressure for flanges is 755 psi.
  • If the temperature for Class 1 400# flange is 700 degrees Fahrenheit, the maximum pressure for flanges is 710 psi.
  • If the temperature for Class 1 400# flange is 800 degrees Fahrenheit, the maximum pressure for flanges is 550 psi.
  • If the temperature for Class 1 400# flange is 900 degrees Fahrenheit, the maximum pressure for flanges is 305 psi.
  • If the temperature for Class 1 400# flange is 1000 degrees Fahrenheit, the maximum pressure for flanges is 115 psi.

Class 600

  • If the temperature for Class 1 600# flange is < 100 degrees Fahrenheit, the maximum pressure for flanges is 1480 psi.
  • If the temperature for Class 1 600# flange is 200 degrees Fahrenheit, the maximum pressure for flanges is 1360 psi.
  • If the temperature for Class 1 600# flange is 300 degrees Fahrenheit, the maximum pressure for flanges is 1310 psi.
  • If the temperature for Class 1 600# flange is 400 degrees Fahrenheit, the maximum pressure for flanges is 1265 psi.
  • If the temperature for Class 1 600# flange is 500 degrees Fahrenheit, the maximum pressure for flanges is 1205 psi.
  • If the temperature for Class 1 600# flange is 600 degrees Fahrenheit, the maximum pressure for flanges is 1135 psi.
  • If the temperature for Class 1 600# flange is 700 degrees Fahrenheit, the maximum pressure for flanges is 1060 psi.
  • If the temperature for Class 1 600# flange is 800 degrees Fahrenheit, the maximum pressure for flanges is 825 psi.
  • If the temperature for Class 1 600# flange is 900 degrees Fahrenheit, the maximum pressure for flanges is 460 psi.
  • If the temperature for Class 1 600# flange is 1000 degrees Fahrenheit, the maximum pressure for flanges is 170 psi.

Class 900

  • If the temperature for Class 1 900# flange is < 100 degrees Fahrenheit, the maximum pressure for flanges is 2220 psi.
  • If the temperature for Class 1 900# flange is 200 degrees Fahrenheit, the maximum pressure for flanges is 2035 psi.
  • If the temperature for Class 1 900# flange is 300 degrees Fahrenheit, the maximum pressure for flanges is 1965 psi.
  • If the temperature for Class 1 900# flange is 400 degrees Fahrenheit, the maximum pressure for flanges is 1900 psi.
  • If the temperature for Class 1 900# flange is 500 degrees Fahrenheit, the maximum pressure for flanges is 1810 psi.
  • If the temperature for Class 1 900# flange is 600 degrees Fahrenheit, the maximum pressure for flanges is 1705 psi.
  • If the temperature for Class 1 900# flange is 700 degrees Fahrenheit, the maximum pressure for flanges is 1590 psi.
  • If the temperature for Class 1 900# flange is 800 degrees Fahrenheit, the maximum pressure for flanges is 1235 psi.
  • If the temperature for Class 1 900# flange is 900 degrees Fahrenheit, the maximum pressure for flanges is 690 psi.
  • If the temperature for Class 1 900# flange is 1000 degrees Fahrenheit, the maximum pressure for flanges is 255 psi.

Class 1500

  • If the temperature for Class 1 1500# flange is < 100 degrees Fahrenheit, the maximum pressure for flanges is 3705 psi.
  • If the temperature for Class 1 1500# flange is 200 degrees Fahrenheit, the maximum pressure for flanges is 3395 psi.
  • If the temperature for Class 1 1500# flange is 300 degrees Fahrenheit, the maximum pressure for flanges is 3270 psi.
  • If the temperature for Class 1 1500# flange is 400 degrees Fahrenheit, the maximum pressure for flanges is 3170 psi.
  • If the temperature for Class 1 1500# flange is 500 degrees Fahrenheit, the maximum pressure for flanges is 3015 psi.
  • If the temperature for Class 1 1500# flange is 600 degrees Fahrenheit, the maximum pressure for flanges is 2840 psi.
  • If the temperature for Class 1 1500# flange is 700 degrees Fahrenheit, the maximum pressure for flanges is 2655 psi.
  • If the temperature for Class 1 1500# flange is 800 degrees Fahrenheit, the maximum pressure for flanges is 2055 psi.
  • If the temperature for Class 1 1500# flange is 900 degrees Fahrenheit, the maximum pressure for flanges is 1150 psi.
  • If the temperature for Class 1 1500# flange is 1000 degrees Fahrenheit, the maximum pressure for flanges is 430 psi.

Class 2500

  • If the temperature for Class 1 2500# flange is < 100 degrees Fahrenheit, the maximum pressure for flanges is 6170 psi.
  • If the temperature for Class 1 2500# flange is 200 degrees Fahrenheit, the maximum pressure for flanges is 5655 psi.
  • If the temperature for Class 1 2500# flange is 300 degrees Fahrenheit, the maximum pressure for flanges is 5450 psi.
  • If the temperature for Class 1 2500# flange is 400 degrees Fahrenheit, the maximum pressure for flanges is 5280 psi.
  • If the temperature for Class 1 2500# flange is 500 degrees Fahrenheit, the maximum pressure for flanges is 5025 psi.
  • If the temperature for Class 1 2500# flange is 600 degrees Fahrenheit, the maximum pressure for flanges is 4730 psi.
  • If the temperature for Class 1 2500# flange is 700 degrees Fahrenheit, the maximum pressure for flanges is 4425 psi.
  • If the temperature for Class 1 2500# flange is 800 degrees Fahrenheit, the maximum pressure for flanges is 3430 psi.
  • If the temperature for Class 1 2500# flange is 900 degrees Fahrenheit, the maximum pressure for flanges is 1915 psi.
  • If the temperature for Class 1 2500# flange is 1000 degrees Fahrenheit, the maximum pressure for flanges is 715 psi.

What Is The Effect Of Flange Pressure Rating On Flange Size

A method of grouping different pressure-temperature established ratings of flanges as per the flange material is known as flange pressure rating. There are a few aesthetic characteristics that distinguish a lower-class flange from a higher-class flange:

  • A flange with a comparatively higher grade is thicker and has greater pressure and temperature resistance.
  • The flange’s outside diameter will grow as the flange pressure rating does.
  • In accordance with the flange pressure rating, the bolt circle diameter will rise.
  • With higher flange classes comes larger bolt holes and more bolts to install.
  • Higher flange ratings also result in wider flange faces.
  • Conclusion

    At some particular temperature requirements, a flange with an elevated rating or class is more powerful than a flange with less rating or class. If they are constructed of the same material and have a higher grade, flanges can tolerate more pressure and heat. At the exact rating and flange class, a flange manufactured of a distinct material will have a varied holding capability for pressure and temperature.
    Flanged valves play an important role in every industrial application, hope this article could help you find the best valve for your application. If you need high quality flanged valves, feel free to catact us [email protected]

,

Leading Ball Valve Manufacturers In Europe

For industrial valves, Europe is the world’s largest manufacturer of oil and gas valves. The 8 % market in the United States is accounted for by ball valves. After China and Germany, Italy was the third-largest exporter of industrial valves in 2016. In this post, you’ll learn about the top ball valve manufacturers in Europe, giving you additional alternatives when it comes to choosing the correct type of ball valve.

Finding the proper business partner for effective operations is critical for anyone involved in the oil and gas industry. However, in an industry as big as the oil and gas industry, finding the ideal fit that meets all of your business criteria is not always straightforward.

In order to meet this challenge, numerous reputed online B2B platforms have been developed specifically for this dynamic industrial landscape, and to make things easy we have compiled a list of some of the most reputable high-performance ball valve manufacturing businesses.

List of leading high-performance ball valves manufacturers in Europe

Europe’s top high-performance valve manufacturers are listed below

  1. Babcock Valves.
  2. Bohmer Ball Valve, Sprockhovel, Germany.
  3. ABO Valve-Olomouc, Czech Republic.
  4. Tecnologías ECONTROL SL, Tarragona, Spain.
  5. Maverick Valves Manufacturing HQ BV, Tilburg, The Netherlands.
  6. Lead Valve (UK), London, UK.
  7. LESER GmbH & Co. KG, Hamburg, Germany.
  8. OMB Valve SpA, Cenate Sotto, Bergamo, Italy
  9. Galli&Cassina, Solaro, Milano, Italy.

  1. BABCOCK VALVES

Located in:Spain.

Founded in: 1976

Certificates: EACC 9001 / 14001 / 18001

Babcock Valves

In 1967, Babcock Wilcox Española -present in the Spanish market since 1918- implemented its diversification policy by setting up a valve manufacturing division, which soon became one of the leading players on the international market

2. Bohmer Ball Valve, Sprockhovel, Germany.

Located in: Germany

Founded in: 1956

Certificates: DIN EN ISO 9001, API 6D and API 6SS, PED (CE), GOST/EAC, CRN.

BOHMER

Source: BOHMER

BOHMER is one of the world’s major manufacturers of ball valves. They use careful coordination of design, materials and technologies to produce the best ball valve for your application.

Böhmer has been interchangeable for over 60 years, with absolute durability and safety. DN3 to DN 1400 (1/8-56 inch) ball valves are strong enough for your application.

Böhmer valves are widely used in the manufacturing business, as well as in the oil and gas industry. Similarly, with district heating pipes and networks.

3. ABO Valve-Olomouc, Czech Republic.

Located in: Czech Republic

Founded in: 1993

Certificates: TUV, GOST R, Lloyd’s Register, ABS, DVGW, or API 609-0068.

ABO

Source: ABO

With over two decades of experience, ABO is a leading manufacturer of high-quality industrial valves. ABO specializes in PTFE lined ball valves, double and triple offset high-efficiency valves for the chemical, power, oil & gas, shipbuilding industries and resilient seated ball valves.

4. Tecnologías ECONTROL SL, Tarragona, Spain.

Located in: Tarragona, Spain.

Founded in: 1970s.

Certificates: ISO 9001, BS OHSAS 18001 and ISO 14001.

ECONTROL

Source: ECONTROL

Control valves are designed, manufactured, and operated by ECONTROL, the indisputable European leader. Every year, ECONTROL Spain produces and ships about 5,000 control valves.

In the regulation service, the ECONTROL VC-100 and VC-101 globe control valves are reliable products. The VC-100s are ECONTROL’s most significant contribution to the process industries in Europe and around the world, and they’ve been in use for more than three decades.

 5. Maverick Valves Manufacturing HQ BV, Tilburg, The Netherlands

Located in: Tilburg, The Netherlands

Founded in: 2000

Certificates: PN16-PN420

Maverick Valves Manufacturing HQ BV

Source: Maverick Valves Manufacturing HQ BV

Maverick Valves Manufacturing HQ BV specializes in the manufacture and distribution of high alloy steel and titanium valves, both standard and custom-made.

Maverick develops and distributes custom-designed valves in various grades of high alloy materials, according to customer specifications. Sizes range from 12 to 56 inches (DN15-DN1400), with class ratings ranging from 150 to 4500 pounds (PN16-PN420).

6. Lead Valve (UK), London, UK.

Located in: London, UK.

Founded in: 1970

Certificates: API/BS/EN/AWWA/ISO etc

LEAD UK

Source: LEAD (UK)

LEAD (UK) is a technology-based firm that started valve engineering in the Oil & Gas sector. LEAD (UK) developed a workshop on industrial pipeline valves after eight years of expansion, progressively expanding the range of products with Globe/Check Gate Valves for Gas& Oil and Water Works Treatment. Lead Valve boosted its production capacity in 2008 to meet expanding global market demand. Iron, steel, and special alloy materials are used in global valves, which meet international criteria such as API/BS/EN/AWWA/ISO, among others.

7. LESER GmbH & Co. KG, Hamburg, Germany.

Located in: Hamburg, Germany.

Founded in: 1818

Certificates: ISO 9001, API, Etc.

LESER

Source: LESER

The LESER, a Hamburg-based company, is the largest manufacturer of safety valves in Europe and one of the leading firms globally, with 1,050 employees, eight branches, and distribution colleagues in more than 80 countries. LESER produces more than 130,000 safety valves each year for global markets in Hohenwestedt, Germany, as well as for local markets in Pathain, India, and Tianjin, China. LESER’s production is characterised by a great depth of production.

8. OMB Valve SpA, Cenate Sotto, Bergamo, Italy

 Located in: Bergamo, Italy

Founded in: 1973

Certificates: ISO 9001, ISO 15848, API 602, API 6A, etc.

OMB Valves Company

Source: OMB Valves Company

The OMB Valves Company is a valve manufacturer with a wide range of products for the oil industry. OMB is a family-owned and operated business that specializes in valves for the oil and gas, fuel, marine, and aerospace industries.

Engineered valves for heavy applications with a focus on high-pressure operation are their speciality. The company has had a Local Purchasing and Local Production strategy from its inception to promote the growth of the communities where it works and operates.

9. Galli&Cassina, Solaro, Milano, Italy

 Located in: Milano, Italy

Founded in: 1919

GalliCassina

Source: Galli&Cassina

Galli&Cassina is a major Italian valve manufacturer and a forerunner in the design and production of a full range of plug valves.

G&C began a massive development of Plug Valves to service the oil and gas sector around the globe and is currently one of the leading suppliers for all foreign oil and gas companies.

Conclusion

Industrial valves are in increased demand around the world, and producers are ready to meet the need. High-performance ball valve vendors in the United States and China can also provide you with high-quality valves. More fantastic vendors may be found in this comprehensive reference to valve manufacturers in Europe. If you are intrigued to know more, why not contact us at China