,

ASTM Materials for Valves: ASTM A216, A351, A352, A105, and A182 (Cast & Forged Grades)

Discover the essential AsTM material standards for valves., Valves larger than 2 inches typically have cast valve bodies, created by casting molten metals into molds, Forged valve bodies, suitable for smaller or high-pressure valves, are made by shaping and machining solid steel. The principal material specifications for cast steel valve bodies include ASTM A216 (WCA, WCB, WCC forstandard conditions, ASTM A352 LCB/LCC for low temperatures, and ASTM A351 CF8/CF8M for stainless steel valves. For forged valve bodies, the relevant ASTM standards are A105, A350, and A182.

CAST STEEL VALVES(ASTM GRADES)

DEFINITION OF CAST VALVE

Cast valves are valves whose bodies have been formed by pouring molten metal into a mold where it solidifies into the desired shape. This casting process allows for the creation of complex shapes and sizes, making it possible to produce valve bodies with intricate internal geometries that would be challenging or impossible to achieve through forging or machining alone. Cast valves are widely used across various industries due to their versatility in design, the ability to work with a wide range of materials, and their cost-effectiveness for producing large or complex valves, They are suitable for numerous applications, handling everything from water and steam to chemicals and gas, depending on the material used in the casting process Therefore, cast valves are characterized by a body made through casting, whereas forged valves possess a body created by forging. Essentially, the difference between cast and forged valves lies in the method used to construct the valve body material.specifically whether it involves steel forging or casting.
Let’s now delve into the most common cast valve body materials according to ASTM

ASTM A216 WCA, WCB, WCC (CARBON STEEL FOR HIGH-TEMPERATURE)

ASTM A216 is a specification established by the American Society for Testing and Materials (AsTM) that covers carbon steel castings for valves, flanges, fittings, and other pressure-containing parts for high-temperature service. The standard is divided into three grades: WCA, WCB, and WCC, with WCB being the most commonly used grade.
These 3 grades covered by the AsTM A216 specification differ mainly in their mechanical properties and temperature capabilities:

 

WCA is the grade with the lowest strength and temperature tolerance.
WCB is the intermediate grade, offering a good balance of strength and ductility across a wide range of temperatures.
WCC has higher strength and impact properties at low temperatures compared to WCB.
ASTM A216 specifies the chemical composition, mechanical properties, heat treatment, and testing requirements to ensure the material’s quality and durability under high-temperature condition This standard is commonly applied in the manufacturing of components for industrial boilers, pressure vessels, and other equipment where robust performance at elevated temperatures is required.
The ASTM A216 specification applies to cast valves that match carbon steel pipes in grades A53, A106, and API 5L.
ASTM A216 steel castings shall be heat treated and can be manufactured in annealed, normalized, or normalized tempered conditions.The surface of steel castings shall be free of adhering elements such as sand, cracks, hot tears, and other defects.

Notes:
1., for each reduction of 0.019% below the specified maximum Carbon content, an increase of 0.04% of manganese above the specified maximum is allowed up to a maximum of 1.10%.
2. For each reduction of 0.01% below the specified maximum Carbon content, an increase of 0.0496 Mn above the specified maximum is allowed up to a maximum of 1.28%.
3. For each reduction of 0.01% below the specified maximum Carbon content, an increase of 0.04% of manganese above the specified maximum is allowed to a maximum of 1.40%.

ASTM A352 LCB/LCC (CARBON STEEL FOR LOW-TEMPERATURE)
ASTM A352 is an ASTM (American Society for Testing and Materials standard specification that covers steel castings for valves,flanges, fittings, and other pressure-containing parts intended primarily for low-temperature service. The standard includes several grades of carbon and alloy steel castings that vary in their mechanical properties and chemical compositions to suit different environmental conditions and temperature ranges.
The grades under ASTM A352 are designed to perform reliably in environments where temperatures may fall below freezing, making them suitable for applications in cold climates or in processes requiring cryogenic temperatures.

 

Key grades within this specification include:
LCB: A grade of carbon steel castings suitable for low-temperature applications where temperatures can go as low as-46°C (-50°F).
LCC: Similar to LcB but with improved impact strength at lower temperatures, making it suitable for even more demanding
low-temperature environments.
LCl, LC2, LC3, LC4: These are alloy steel grades within AsTM A352, each designed for specific low-temperature ranges and applications, with Lc3, for example, being nickel steel castings intended for service down to -01’C -150°F).

Each grade specified in ASTM A352 has defined requirements for chemical composition, mechanical properties such as tensile strength, yield strength, and elongation), and toughness to ensure the castings perform adequately under the specified service conditions, The standard also outlines requirements for heat treatment, quality, and test methods to verify the properties of the castings.
ASTM A352 is widely used in the oil and gas industry, petrochemical plants, and other applications where materials are exposed to low temperatures and require a high level of toughness to prevent brittle fracture.
The ASTM A352 specification applies to cast valves that match carbon steel pipes for low-temperature applications in grades A333.
Chemical composition of A352 cast valves Gr, LCA/LCB/Lcc (valve material chart)

valve material chart

ASTM A351 CF8/CF8M (STAINLESS STEEL FOR HIGH-TEMP. & CORROSIVE SERVICE)

ASTM A351 is a standard specification established by the American Society for Testing and Materials (ASTM) that covers castings of austenitic steel for valves, flanges, fittings, and other pressure-containing parts. This specification is particularly focused on stainless steel castings that are intended for high-temperature service. The ASTM A351 standard includes several grades, each with specific chemical compositions and mechanical properties to suit different environments and applications.

Key grades under ASTM A351 include:

  • CF8: Equivalent to 304 stainless steel, this grade is known for its good corrosion resistance and is widely used in general applications.
  • CF8M: Equivalent to 316 stainless steel, CF8M offers enhanced corrosion resistance due to its molybdenum content, making it suitable for more corrosive environments such as those encountered in chemical processing.
  • CF3 and CF3M: These are the low-carbon versions of CF8 and CF8M, respectively, offering similar corrosion resistance but with improved weldability and reduced susceptibility to intergranular corrosion after welding or heating.

The standard specifies requirements for chemical composition, mechanical properties, heat treatment, and testing procedures to ensure the quality and performance of the castings. ASTM A351 stainless steel castings are commonly used in applications requiring good corrosion resistance at both ambient and elevated temperatures, including the chemical industry, food processing, and petrochemical operations, among others.

Any ASTM A351 cast part shall receive heat treatment followed by a quench in water or rapid cooling. The steel shall conform to the chemical and mechanical requirements set by the specification. The steel shall be made by the electric furnace process with or without separate refining such as argon-oxygen decarburization.

The ASTM A351 specification applies to cast valves that match stainless steel pipes for high-temperature and corrosive applications applications in ASTM A312.

 

ASTM A351 stainless steel valves, chemical composition